Prof.: Raimundo Nonato Távora Costa

CALIBRAÇÃO DE CALHAS PARSHALL

O medidor de Parshall foi idealizado por R. L. Parshall, engenheiro do Serviço de Irrigação do Departamento de Agricultura dos Estados Unidos, tendo como objetivo principal à irrigação, sendo os de menores tamanhos para regular a descarga de água distribuída às propriedades agrícolas, e os maiores para serem aplicados aos grandes canais de irrigação.

Uma calha Parshall é composta por três partes distintas: 1) secção convergente ou entrada; 2) secção estrangulada ou garganta; e 3) secção divergente ou saída. A primeira secção é formada por duas paredes verticais e convergentes e com o fundo em nível.

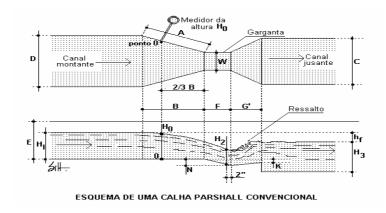


Figura 1. Detalhes do medidor de regime crítico denominado calha Parshall

A segunda, também por duas paredes verticais, porém paralelas, e com o fundo em declive de 1 V: 2,67 H. A saída, por duas paredes verticais divergentes e com o fundo num aclive suave (Figura 1).

As principais vantagens dos medidores Parshall são: a) baixo custo; b) não há perigo de formação de depósitos devidos a matérias em suspensão; c) podem funcionar como um dispositivo em que só uma medição de carga hidráulica é necessária; d) grande habilidade em suportar submergências elevadas, sem alteração de vazão, etc.

O escoamento através de um medidor Parshall pode ocorrer de forma livre ou afogada. Quando o escoamento é livre, mede-se apenas a carga na secção convergente para se determinar à vazão. Se o medidor estiver afogado, será necessário medir também a carga no final da secção estrangulada, e a descarga real será inferior à obtida pela fórmula, devendo-se aplicar uma correção.

No estudo de canais, existe uma profundidade-limite entre o regime de fluxo turbulento e laminar, também chamada de profundidade crítica. Nesta profundidade, o valor da energia específica é mínimo. As paredes convergentes da secção de entrada conduzem suavemente a veia líquida até o início da secção estrangulada onde, devido à declividade, a água flui com um mínimo de energia, ou seja, com profundidade crítica.

Chamando-se de "E" a energia específica das águas à montante, tem-se que:

$$E = \frac{v^2}{2g} + H$$
(I). A profundidade crítica é aquela em que "E" é um mínimo.

• Sendo uma seção retangular de largura unitária, tem-se que:

$$Q = V \times A \rightarrow V = \frac{Q}{A} \rightarrow V = \frac{Q}{H} \dots (II)$$

• Substituindo (II) em (I)

$$E = \frac{v^2}{2g} + H \rightarrow E = \left(\frac{Q}{H}\right)^2 \times \frac{1}{2g} + H \rightarrow E = \frac{Q^2}{H^2 2g} + H \rightarrow E = \frac{Q^2 + H^3 2g}{H^2 2g}$$

$$Q^2 + H^32g = EH^22g \rightarrow Q^2 = EH^22g - H^32g \rightarrow Q^2 = 2g (EH^2 - H^3)$$

Q =
$$\sqrt{2g(EH^2 - H^3)}$$
(III)

• Derivando-se a equação (III):

$$Q = \sqrt{2g} \sqrt{EH^2 - H^3}$$

$$\frac{dQ}{dH} = \frac{1}{2} \sqrt{2g} \left(EH^2 - H^3 \right)^{-1/2} \left(2EH - 3H^2 \right) = 0$$

$$2 EH - 3 H^2 = 0 \rightarrow H (2E - 3H) = 0 \rightarrow 2E - 3H = 0$$

$$E = \frac{3}{2} \text{ H.....(IV)}$$

Substituindo (IV) em (III):

$$Q = \sqrt{2g(EH^2 - H^3)} \Rightarrow Q = \sqrt{2g(\frac{3}{2}H^3 - H^3)} \Rightarrow Q = \sqrt{2g(\frac{3H^3 - 2H^3}{2})} \Rightarrow Q = \sqrt{2g(\frac{H^3}{2})}$$

$$Q = \sqrt{H^3 g} \rightarrow Q = (H^3 g)^{1/2} \rightarrow Q^2 = H^3 g$$

$$H^3 = \frac{Q^2}{g}$$
....(V)

• Para uma seção estrangulada de largura d qualquer, a vazão por unidade de largura será $\frac{Q}{d}$. De acordo com a equação (V), tem-se que:

$$H^3 = \frac{Q^2}{g} \rightarrow H^3 = \left(\frac{Q}{d}\right)^2 \frac{1}{g} \rightarrow H^3 = \frac{Q^2}{d^2 g}$$

$$Q^2 = d^2gH^3(VI)$$

• Já à montante, considerando-se uma seção de largura D, pela equação da continuidade:

$$Q = V \times S \rightarrow Q = VDH \rightarrow Q^2 = (VDH)^2 \rightarrow Q^2 = V^2D^2H^2$$

$$V^2 = \frac{Q^2}{D^2 H^2}$$
....(VII)

• Substituindo as equações (IV) e (VII), na equação (I):

$$E = \frac{v^2}{2g} + H \qquad (I)$$

$$Como: E = \frac{3}{2} H \qquad (IV) \rightarrow Então: \frac{3}{2} H = \frac{v^2}{2g} + H$$

$$Como: V^2 = \frac{Q^2}{D^2 H^2} \dots (VII) \rightarrow Então: \frac{3}{2} H = \frac{Q^2}{D^2 H^2 2g} + H \rightarrow \frac{D^2 H^3 2g + Q^2}{D^2 H^2 2g} = \frac{3}{2} H$$

$$2Q^2 + 2D^2H^32g = 3D^2H^32g \rightarrow 2Q^2 = 3D^2H^32g - 2D^2H^32g \rightarrow 2Q^2 = D^2H^32g \rightarrow Q^2 = \frac{D^2 H^3 2g}{2}$$

$$Q = \sqrt{D^2 H^3 g} \rightarrow Q = D \sqrt{g} H^{3/2}. \text{ Portanto: } \mathbf{Q} = \mathbf{K}.\mathbf{H}^{3/2}$$

Calibração de calhas Parshall em laboratório

As vazões serão controladas de modo a proporcionar diversas cargas hidráulicas. Para cada uma destas cargas hidráulicas serão cronometrados os tempos necessários para encher um recipiente de volume conhecido, calculando-se assim as vazões pelo método direto. Para cada par de valores "vazão x carga hidráulica", o procedimento será realizado em três repetições.

Um ajuste estatístico será realizado com os pares de valores "vazão x carga hidráulica", com o intuito de se obter a expressão que melhor descreva a relação funcional entre estas variáveis. No Quadro 1 visualizam-se exemplos de equações de calibração de calhas Parshall, e na Figura 2, um sistema para realização dos testes.

Quadro 1. Equações de calibração de calhas Parshall.

REF.	EQUAÇÃO DE REGRESSÃO	COEFICIENTE DETERMINAÇÃO
Α	Q = 0,1118h ^{1,5868}	0,9951
В	$Q = 0,0605h^{1,3454}$	0,9962
С	$Q = 0.0484h^{1.2173}$	0,9962
D	$Q = 0.0568h^{1.2642}$	0,9920

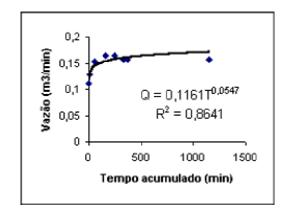
Figura 2. Sistema para calibração de calhas Parshall

Exemplo de aplicação

As calhas Parshall, além de serem utilizadas nas avaliações de sistemas de irrigação por superfície, podem ser utilizadas para medir descargas em uma área irrigada e, conseqüentemente o volume e a lâmina de água aplicada, conforme descrição a seguir.

No procedimento de instalação a campo, deve-se ter o cuidado para que a secção convergente fique em nível, além de se proporcionar uma boa vedação nas laterais da calha (Figuras 3).

Durante cada evento de irrigação procedem-se às leituras de cargas hidráulicas junto à calha Parshall, as quais serão posteriormente transformadas em valores de vazões, através do uso da respectiva equação de calibração. Registram-se, também, os tempos instantâneos em que se realizam as leituras de cargas hidráulicas.


Uma planilha contendo dados sobre a área irrigada, data e evento de irrigação, além da equação de calibração, deve ser elaborada, como forma de facilitar, posteriormente, os dados de compilação e cálculos referentes à quantificação da água aplicada.

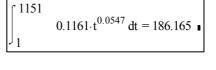


Figura 3. Calha Parshall instalada na entrada de um tabuleiro.

A planilha contendo os dados de tempos instantâneos e vazões instantâneas serão utilizadas para o cálculo do volume de água aplicada. Inicialmente, ajusta-se a equação de melhor ajuste entre os dados de vazão instantânea e tempo acumulado e, posteriormente, integra-se referida equação nos limites de tempo correspondentes. A seguir, é apresentada uma planilha contendo informações sobre irrigação em cultura do arroz no Distrito de Irrigação Morada, em solo de textura argilo-siltosa, em uma maracha de 0,25 ha.

Vazão de Entrada				
Hora	Tempo Acum (min)	h (cm)	Q (m³/min)	
11:20	1	7,5	0,1113	
11:25	6	8,3	0,1275	
12:14	55	9,5	0,1529	
14:00	161	10,0	0,1639	
15:30	251	10,0	0,1639	
16:50	331	9,7	0,1573	
17:30	371	9,7	0,1573	
06:30	1151	9,7	0,1573	

Lâmina (mm) 74,5

As lâminas de água aplicadas na cultura do arroz pelos irrigantes do Distrito de Irrigação Morada Nova, CE, são muito elevadas, principalmente as primeiras irrigações, conforme visualiza-se na Figura 4.

Figura 4. Primeira irrigação em arroz em solo com textura argilo-siltosa.