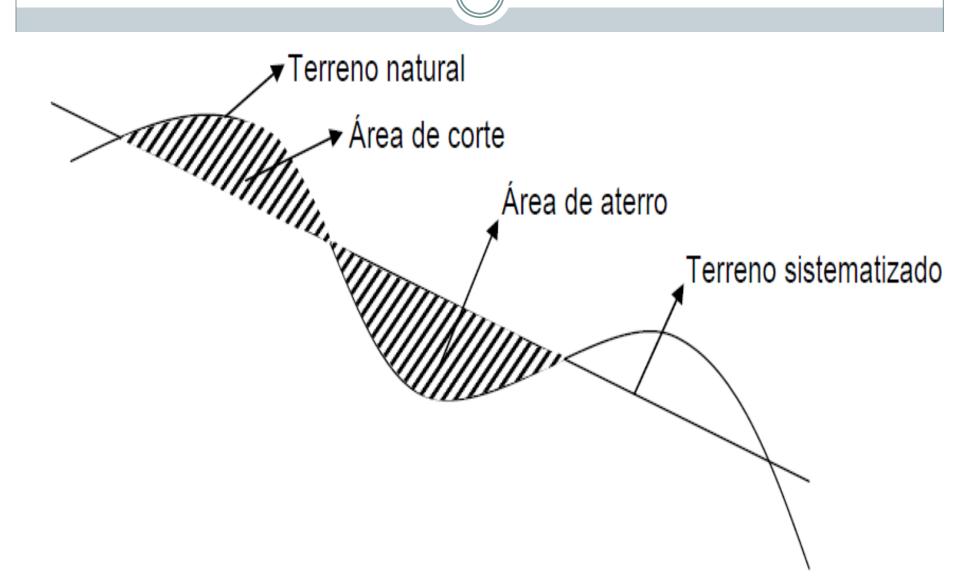


Universidade Federal do Ceará Centro de Ciências Agrárias Departamento de Engenharia Agrícola Disciplina: Topografia Básica


Facilitadores: Nonato, Julien, Fabrício e Rogério

SISTEMATIZAÇÃO DE TERRENOS PARA IRRIGAÇÃO

SISTEMATIZAÇÃO DE TERRENOS

ILUSTRAÇÃO DO PROCESSO DE SISTEMATIZAÇÃO

CONCEITO

• Consiste na técnica de escavar(cortar), transportar e aterrar o solo, ou simplesmente movê-lo e aplainá-lo, mudando a configuração original do terreno, com o objetivo de tornar sua superfície com declividades uniformes em uma ou nas duas direções.

DISTINÇÃO DOS TRABALHOS

Aplainamento ou alisamento do solo:
 quando a topografia original é
 regular, exige apenas uniformização,
 sendo utilizados escarificadores,
 gradagens, plainas, etc.

DISTINÇÃO DOS TRABALHOS

 Desmonte e/ou aterro: quando a topografia original é regular, mas apresenta pequenas elevações ou depressões, sendo necessários o uso de buldozer e o acabamento com patrol ou niveladoras.

DISTINÇÃO DOS TRABALHOS

• Terraplanagem: quando a topografia original é irregular e desuniforme, exigindo maiores movimentos de terra, utilizando-se tratores de esteira, pá carregadeira e caminhão basculante, sendo o acabamento realizado com patrol ou niveladora.

VANTAGENS DA SISTEMATIZAÇÃO

- Possibilidade de irrigação por métodos superficiais,
 com maior eficiência no controle e aplicação da água;
- Melhora a drenagem superficial do solo;
- Diminui a erosão do solo e proporciona uma menor lixiviação de fertilizantes;
- Melhora a eficiência de irrigação, proporcionando uma economia de água ou ampliação da área irrigada.

LIMITAÇÕES DA SISTEMATIZAÇÃO

- Custo de investimento elevado;
- Possibilidade de expor o subsolo infértil;
- Mesmo não expondo o subsolo, haverá queda temporária de produtividade nas zonas de corte.

FASES DO PLANEJAMENTO E EXECUÇÃO

- Reconhecimento da área e dos solos:
 definição da cultura e do sistema de irrigação
 a ser utilizado, além da necessidade e grau da
 sistematização.
- Escolha da época de operações: durante o período não chuvoso.

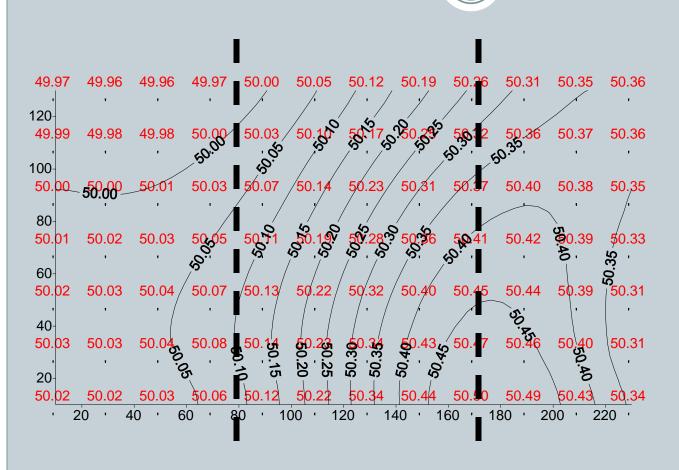
FASES DO PLANEJAMENTO E EXECUÇÃO

 Desmatamento e limpeza do terreno: aconselha-se que após as operações de desmatamento e limpeza, o terreno seja gradeado, e se possível sejam efetuadas algumas passadas com niveladoras, tendo em vista aumentar o rendimento dos trabalhos topográficos e das máquinas posteriormente.

FASES DO PLANEJAMENTO E EXECUÇÃO

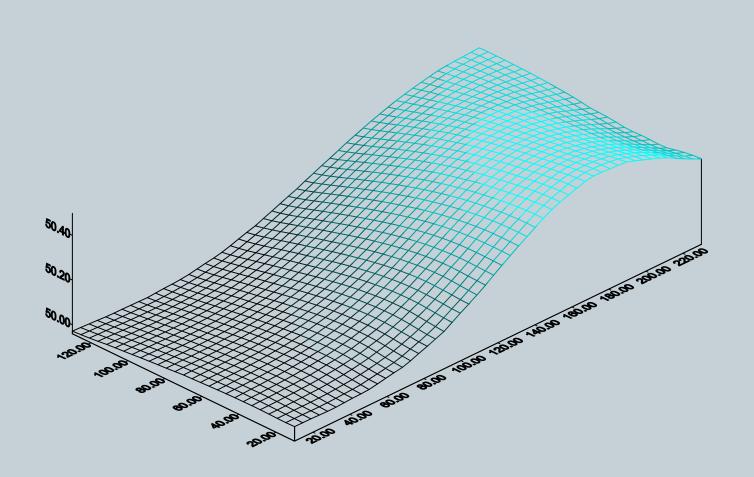
 Levantamento planialtimétrico: em áreas com declives desuniformes e acentuados, recomenda-se a divisão destas em parcelas, as quais devem ser orientadas a partir de um estudo das curvas de nível do terreno.

CURVAS DE NÍVEL


Declividade do terreno	Equidistância vertical
(%)	(cm)
0 - 1	5 – 15
1 - 2	15 – 30
2 - 5	30 – 50
5 - 10	50 - 150

TRAÇADO DAS CURVAS DE NÍVEL: PREPARAÇÃO DO MAPA BASE PARA ELABORAÇÃO DO PROJETO

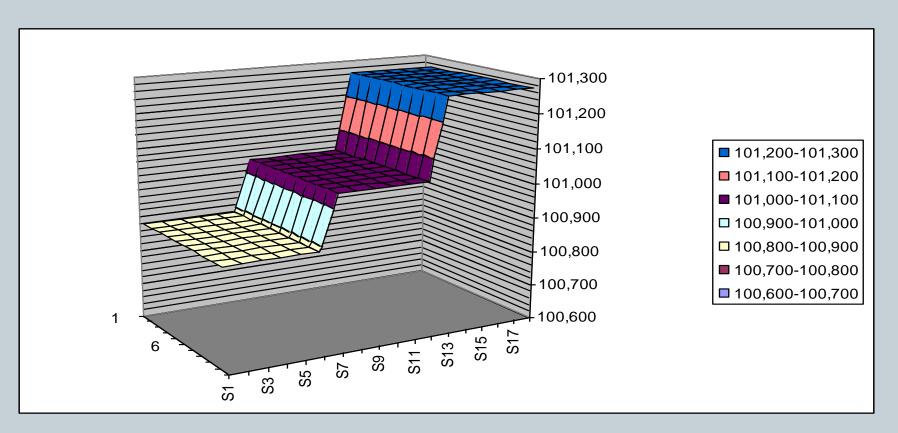
- A partir das cotas originais do terreno é possível interpolar curvas de nível;
- A análise das curvas de nível permite separar a área em setores homogêneos;


OBJETIVO: sistematização racional e de menor custo.

TRAÇADO DAS CURVAS DE NÍVEL: SEPARAÇÃO DO TERRENO EM ÁREAS HOMOGÊNEAS

As zonas à direita e à esquerda têm declive menor que a zona central da área. A sistematização deve levar esta situação de relevo em conta.

REPRENTAÇÃO DA ÁREA ANTERIOR EM TRÊS DIMENSÕES



SEPARAÇÃO DO TERRENO EM ÁREAS HOMOGÊNEAS: DEFINIÇÕES

A partir da análise das curvas de nível do terreno pode-se concluir que a movimentação de terra seria menor se fossem preparados três planos de sistematização.

Com esta solução a terra não teria que ser deslocada desde a parte mais alta do terreno até a parte mais baixa, tendo que ser transportada a grande distância.

FORMAÇÃO DE TRÊS PLANOS DE SISTEMATIZAÇÃO

A movimentação de terra seria feita somente dentro do plano de sistematização.

SEPARAÇÃO DO TERRENO EM ÁREAS HOMOGÊNEAS: DEFINIÇÕES

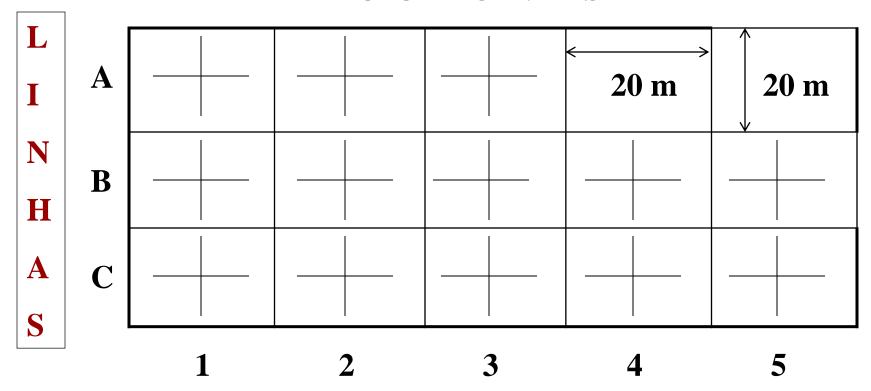
OBSERVAÇÕES:

- A formação de mais de um plano implica na existência de patamares (degraus) na área;
- Em um plano de sistematização pode haver um ou mais tabuleiros de plantio.

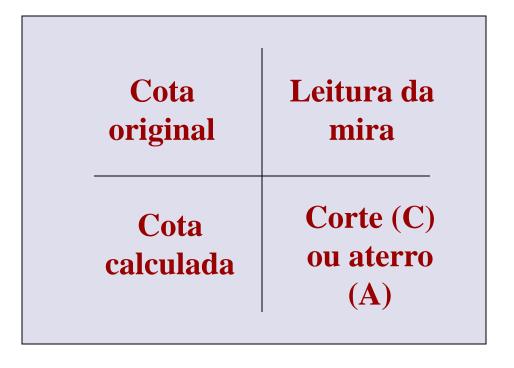
PROCEDIMENTOS PARA O LEVANTAMENTO TOPOGRÁFICO

- •Dividir a área em partes menores (quadrículas) de 20m x 20m;
- No centro de cada quadrícula cravar um piquete e logo ao lado uma estaca;
- •Obter a cota do terreno no centro de cada quadrícula;
- •Representar em um mapa as cotas do terreno;

LEVANTAMENTO TOPOGRÁFICO: VISTA DE ÁREA ESTAQUEADA



MANOBRAS COM O TRATOR



REPRESENTAÇÃO DA ÁREA NO LEVANTAMENTO TOPOGRÁFICO

COLUNAS

LEVANTAMENTO TOPOGRÁFICO – DETALHE DA REPRESENTAÇÃO DOS DADOS DE CADA QUADRÍCULA

LEVANTAMENTO TOPOGRÁFICO: QUADRÍCULAS COM AS COTAS ORIGINAIS DO TERRENO

102	105	108	109	111
104	107	112	114	114
105	109	115	116	119

COTA MÉDIA = 110

CÁLCULO DA SISTEMATIZAÇÃO: OPÇÕES DE MUDANÇA DO PERFIL DO TERRENO

- a) Deixar a área totalmente plana;
- b) Deixar a área com declividade conhecida em apenas uma direção;
- c) Deixar a área com declividade conhecida em duas direções.
- d) Deixar a área com declividades conhecidas que gerem o menor volume de movimentação de terra;

REPRESENTAÇÃO DOS PROCEDIMENTOS PARA DEIXAR A ÁREA TOTALMENTE PLANA

PROCEDIMENTOS PARA DEIXAR A ÁREA TOTALMENTE PLANA – MÉTODO DO CENTRÓIDE

- Calcula-se a média aritmética das cotas originais;
- 2. Procedem-se cortes ou aterros nas quadrículas para que as novas cotas sejam todas iguais.

RESULTADOS DOS CÁLCULOS PARA ÁREA TOTALMENTE PLANA

 $\Sigma C = 31 \text{ cm}$

 $\Sigma A = 31 \text{ cm}$

AJUSTAMENTO DE CORTES E ATERROS

A relação entre a soma das alturas de cortes e de aterros deve variar entre 1,2 e 1,4. Ou seja, o volume de terra cortado deve ser de 20 a 40% maior que o previsto para o aterro.

Isto é necessário porque o material granular, ao ser retirado, transportado e depositado, sofre compactação (redução do tamanho dos poros), sendo insuficiente para realizar o aterro se a relação $\Sigma C/\Sigma A$ for igual a 1,0.

AJUSTAMENTO DE CORTES E ATERROS

Se as quadrículas forem todas do mesmo tamanho, a relação entre cortes e aterros pode ser calculada apenas pela relação entre a soma das alturas de cortes e aterros, como no exemplo:

$$\Sigma C/\Sigma A = 31$$
cm $/31$ cm $= 1,0$

Se houver quadrículas de tamanho diferente, a relação tem que ser feita considerando os volumes deslocados, multiplicando a altura de corte ou aterro pela área de cada quadrícula.

REBAIXAMENTO DO PLANO SISTEMATIZADO

Se a relação $\Sigma C/\Sigma A$ for menor que o valor desejado, as cotas calculadas para as quadrículas que sofrerão corte devem ser rebaixadas de um valor Δ , o que equivale a aumentar o valor do corte no local.

O valor de Δ pode ser determinado usando a fórmula apresentada a seguir.

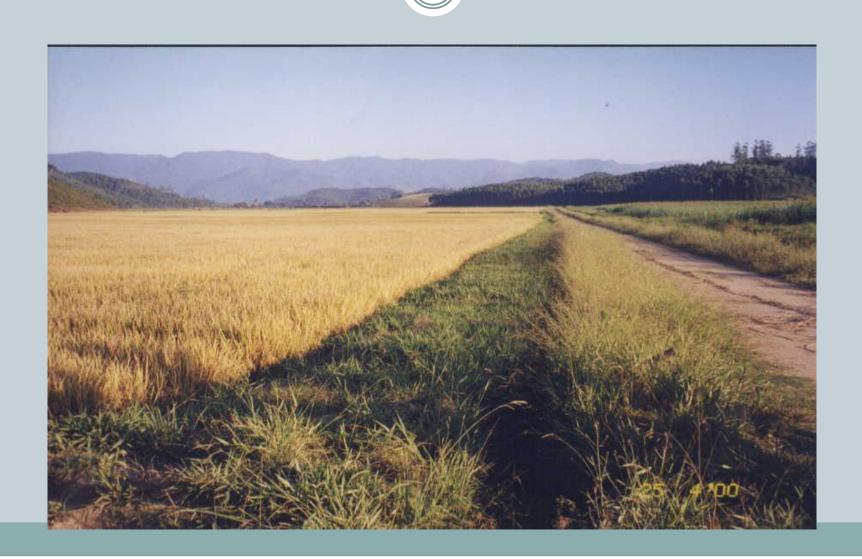
AJUSTAMENTO DE CORTES E ATERROS

$$\Delta = \frac{m.\Sigma A - \Sigma C}{m.NA + NC}$$

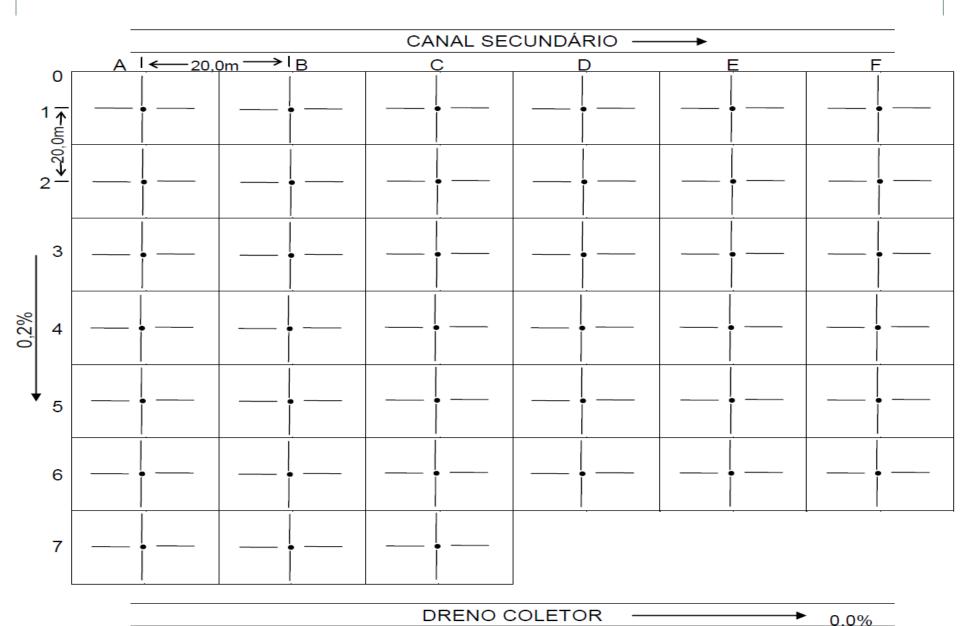
∆ é variação na cota de todos os piquetes (cm); m é a relação C/A desejada;

NA e NC são o número de piquetes onde é necessário fazer aterro ou corte, respectivamente;

 ΣA e ΣC são os valores do somatório das alturas de aterro e de cortes, respectivamente (cm).


OPERAÇÕES MECÂNICAS:TRATOR DE ESTEIRA USADO NAS OPERAÇÕES DE SISTEMATIZAÇÃO

OPERAÇÕES MECÂNICAS:TRATOR DE ESTEIRA EM OPERAÇÃO DE CORTE DO TERRENO


VISTA DE ÁREA SISTEMATIZADA COM ARROZ EM FASE DE MATURAÇÃO

IRRIGAÇÃO POR SULCOS

EXEMPLO DE APLICAÇÃO: IRRIGAÇÃO POR SULCOS

COORDENADAS DO CENTRÓIDE


✓ Em áreas quadradas ou retangulares ele coincide com o cruzamento das diagonais. Em áreas triangulares, com o cruzamento das medianas. O centróide corresponde ao centro de gravidade ou o centro geométrico da área.

COORDENADAS DO CENTRÓIDE

$$X = \frac{\sum\limits_{i=1}^{n}(S_{j}\cdot N_{j})}{\sum\limits_{j=1}^{n}N_{j}}; Y = \frac{\sum\limits_{i=1}^{n}(S_{i}\cdot N_{i})}{\sum\limits_{i=1}^{n}N_{i}}; \text{ sendo:}$$

- S: distância em piquetes ao ponto de origem "O", onde j : coluna e i : linha.
- X e Y: distância em piquetes do centróide ao ponto de origem "O".
- N_i: número de piquetes na coluna j.
- N_i: número de piquetes na linha i.

CÁLCULO DAS COORDENADAS DO CENTRÓIDE



 $X = [(1x7)+(2x7)+(3x7)+(4x6)+(5x6)+(6x6)] /39 \approx 3,4 \text{ piquetes de "O"};$ $Y = [(1x6)+(2x6)+(3x6)+(4x6)+(5x6)+(6x6)+(7x3)] /39 \approx 3,8 \text{ piquetes de "O"}.$

NIVELAMENTO GEOMÉTRICO – COTAS DO TERRENO

Estaca	Ré (m)	Alt. inst. (m)	Leit. vante (m)	Cotas (m)
1A	1,495	11,495		10,000
1B			1,505	9,990
1C			1,560	9,935
1D			1,550	9,945
1E			1,540	9,955
1F			1,490	10,005
2A			1,580	9,915
2B			1,580	9,915
2C			1,620	9,875
2D			1,580	9,915
2E			1,630	9,865
2F			1,605	9,890
3A			1,580	9,915
3B			1,645	9,850
3C			1,635	9,860
3D			1,655	9,840
3E			1,700	9,795
3F			1,690	9,805
4A			1,555	9,940
4B			1,560	9,935
4C			1,650	9,845
4D			1,605	9,890
4E			1,670	9,825
4F			1,595	9,900
5A			1,580	9,915
5B			1,620	9,875
5C			1,645	9,850
5D			1,590	9,905
5E			1,670	9,825
5F			1,600	9,895
6A			1,600	9,895
6B			1,585	9,910
6C			1,660	9,835
6D			1,615	9,880
6E			1,640	9,855
6F			1,600	9,895
7A			1,640	9,855
7B			1,620	9,875
7C			1,650	9,845

COTA DO CENTRÓIDE

$$Hc = \left(\sum_{n=1}^{n} Ci \cdot Ai\right) / \sum_{n=1}^{n} Ai$$

- Para áreas de influência iguais, tem-se:

$$\sum_{i=1}^{n} Ai = N \cdot Ai$$
; sendo N o número de estacas.

$$\sum_{i=1}^{n} Ci \cdot Ai = Ai \sum_{i=1}^{n} Ci$$

Portanto: Hc =
$$\left(Ai \cdot \sum_{i=1}^{n} Ci\right) / N \cdot Ai :: Hc = \left(\sum_{i=1}^{n} Ci\right) / N$$

No exemplo ilustrativo, tem-se que Hc = 9,89m.

CÁLCULO DAS COTAS PROJETADAS

Hc = 9,89m. Tomando-se por base a coordenada do centróide na direção Y (3,8 piquetes a partir de O), tem-se que a distância até a linha 4 será: 0,2 piquetes x 20,0m = 4,0m.

Na direção Y, α = 0,2%, logo:

$$4m \rightarrow X$$
 $9,89m(Hc) - 0,008m = 9,882m.$

Na direção X, como α = 0%, tem-se sempre a mesma cota ao longo da linha.

$$20m \longrightarrow Z : Z = 0.04m$$

CORTES E ATERROS ORIGINAIS

	CANAL SECUNDÁRIO →								_			
0 1	A I←—20,0m→IB			C D			Ę		F			
0	10,000	1,495	9,990	1,505	9,935	1,560	9,945	1,550	9,955	1,540	10,005	1,490
1 <u>↑</u> w ₀	10,002	0,002	10,002	0,012	10,002	0,067	10,002	0,057	10,002	0,047	10,002	-0,003
1 ← m0,02→1	9,915	1,580	9,915	1,580	9,875	1,620	9,915	1,580	9,865	1,630	9,890	1,605
2	9,962	0,047	9,962	0,047	9,962	0,087	9,962	0,047	9,962	0,097	9,962	0,072
. 3	9,915	1,580	9,850	1,645	9,860	1,635	9,840	1,655	9,795	1,700	9,805	1,690
	9,922	0,007	9,922	0,072	9,922	0,062	9,922	0,082	9,922	0,127	9,922	0,117
0 4	9,940	1,555	9,935	1,560	9,845	1,650	9,890	1,605	9,825	1,670	9,900	1,595
4	9,882	-0,058	9,882	-0,053	9,822	0,037	9,882	-0,008	9,882	0,057	9,882	-0,018
↓ _	9,915	1,580	9,875	1,620	9,850	1,645	9,905	1,590	9,825	1,670	9,895	1,600
5	9,842	-0,073	9,842	-0,033	9,842	-0,008	9,842	-0,063	9,842	0,017	9,842	-0,053
6	9,895	1,600	9,910	1,585	9,835	1,660	9,880	1,615	9,855	1,640	9,895	1,600
0	9,802	-0,093	9,802	-0,108	9,802	-0,033	9,802	-0,078	9,802	-0,053	9,802	-0,093
7	9,855	1,640	9,875	1,620	9,845	1,650						
'	9,762	-0,093	9,762	-0,113	9,762	-0,083						

PLANILHAS DE CORTES E ATERROS

Α	turas originais (c	Alturas corrig	idas (cm)	
Estaca	Corte	Aterro	Corte (+ 0,90)	
1A	_	0,2	0,7	
1B	_	1,2	_	0,3
1C	_	6,7	_	5,8
1D	_	5,7	_	4,8
1E	_	4,7	_	3,8
1F	0,3	_	1,2	_
2A	_	4,7	_	3,8
2B	_	4,7	_	3,8
2C	_	8,7	_	7,8
2D	_	4,7	_	3,8
2E	_	9,7	_	8,8
2F	_	7,2	_	6,3
3A	_	0,7	0,2	_
3B	_	7,2		6,3
3C	_	6,2	_	5,3
3D	_	8,2	_	7,3
3E	_	12,7	-	11,8
3F	_	11,7	_	10,8
4A	5,8	-	6,7	-
4B	5,3	_	6,2	_
4C	_	3,7	-	2,8
4D	0.8	_	1,7	
4E	_	5,7	_	4,8
4F	1,8		2,7	_
5A	7,3	_	8,2	_
5B	3,3	-	4,2	_
5C	0,8	-	1,7	_
5D	6,3	_	7,2	_
5E	-	1,7	-	0,8
5F	5,3	_	6,2	_
6A	9,3	-	10,2	_
6B	10,8	-	11,7	_
6C	3,3	-	4,2	_
6D	7,8	-	8,7	_
6E	5,3	-	6,2	-
6F	9,3	-	10,2	-
7A	9,3	-	10,2	-
7B	11,3	-	12,2	-
7C	8,3	-	9,2	_
TOTAL	111,7	116,0	128,8	98,9

CÁLCULO DO VOLUME DE TERRA

5.1. Para áreas de influência das estacas iguais:

Volume de corte = $a \cdot \sum_{i=1}^{n} C_i$, sendo C_i : corte corrigido

Volume de aterro = $a \cdot \sum_{i=1}^{n} A_i$, sendo A_i: aterro corrigido e

a: área de influência de cada estaca.

5.2. Para áreas de influência das estacas diferentes:

Volume de corte = $\Sigma A_c \cdot \overline{h_c}$; sendo:

A_c: área de corte (planímetro)

 $\overline{h_c}$: altura média de corte.

Volume de aterro = $\Sigma A_a \cdot \overline{h_a}$; sendo:

A_a: área de aterro (planímetro)

 $\overline{h_a}$: altura média de aterro

$$\overline{h_c} = \left(\sum_{i=1}^n Ci\right)/n$$

$$\overline{h_a} = \left(\sum_{i=1}^n Ai\right)/n$$
 ;; sendo n: número de estacas.